langchain Runnable objects (such as chat models, retrievers, chains, etc.) can be passed directly into evaluate() / aevaluate().

Setup

Let’s define a simple chain to evaluate. First, install all the required packages:
pip install -U langsmith langchain[openai]
Now define a chain:
from langchain.chat_models import init_chat_model
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

instructions = (
    "Please review the user query below and determine if it contains any form "
    "of toxic behavior, such as insults, threats, or highly negative comments. "
    "Respond with 'Toxic' if it does, and 'Not toxic' if it doesn't."
)

prompt = ChatPromptTemplate(
    [("system", instructions), ("user", "{text}")],
)

llm = init_chat_model("gpt-4o")
chain = prompt | llm | StrOutputParser()

Evaluate

To evaluate our chain we can pass it directly to the evaluate() / aevaluate() method. Note that the input variables of the chain must match the keys of the example inputs. In this case, the example inputs should have the form {"text": "..."}.
Requires langsmith>=0.2.0
from langsmith import aevaluate, Client

client = Client()

# Clone a dataset of texts with toxicity labels.
# Each example input has a "text" key and each output has a "label" key.
dataset = client.clone_public_dataset(
    "https://smith.langchain.com/public/3d6831e6-1680-4c88-94df-618c8e01fc55/d"
)

def correct(outputs: dict, reference_outputs: dict) -> bool:
    # Since our chain outputs a string not a dict, this string
    # gets stored under the default "output" key in the outputs dict:
    actual = outputs["output"]
    expected = reference_outputs["label"]
    return actual == expected

results = await aevaluate(
    chain,
    data=dataset,
    evaluators=[correct],
    experiment_prefix="gpt-4o, baseline",
)
The runnable is traced appropriately for each output. Runnable Evaluation